Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium.
نویسندگان
چکیده
To evaluate the relationship of inositol 1,4,5-trisphosphate (IP3) receptor-mediated signal transduction and cellular energy dynamics, we have characterized effects of nucleotides on IP3 receptor (IP3R)-mediated calcium (Ca2+) flux in purified IP3 receptors reconstituted in lipid vesicles (IP3RV) and examined hypoxia-induced augmentation of intracellular Ca2+ in intact cells. Reduced nicotinamide adenine dinucleotide (NADH) increases IP3-mediated Ca2+ flux in IP3RV. This effect is highly specific for NADH. Hypoxia elicited by brief exposure of nerve growth factor-differentiated PC12 cells or cerebellar Purkinje cells to cyanide elicits rapid increased in internal [Ca2+], which derives from IP3-sensitive stores. Blockade of this effect by 2-deoxyglucose and inhibition of glyceraldehyde-3-phosphate dehydrogenase implicates enhanced glycolytic production of NADH in the Ca2+ stimulation. Internal [Ca2+] is markedly and specifically increased by direct intracellular injection of NADH, and this effect is blocked by heparin, further implicating IP3R stores. These findings indicate that direct regulation of IP3R by NADH is responsible for elevated cytoplasmic [Ca2+] occurring in the earliest phase of hypoxia. This link of IP3R activity with cellular energy dynamics may be relevant to both hypoxic damage and metabolic regulation of IP3 signaling processes.
منابع مشابه
Inositol 1,4,5-trisphosphate receptor/GAPDH complex augments Ca2+ release via locally derived NADH.
NADH regulates the release of calcium from the endoplasmic reticulum by modulation of inositol 1,4,5-trisphosphate receptors (IP3R), accounting for the augmented calcium release of hypoxic cells. We report selective binding of IP3R to GAPDH, whose activity leads to the local generation of NADH to regulate intracellular calcium signaling. This interaction requires cysteines 992 and 995 of IP3R a...
متن کاملNicotinic Acid Adenine Dinucleotide Phosphate Mediates Ca Signals and Contraction in Arterial Smooth Muscle via a Two-Pool Mechanism
Previous studies of arterial smooth muscle have shown that inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose mobilize Ca from the sarcoplasmic reticulum. In contrast, little is known about Ca mobilization by nicotinic acid adenine dinucleotide phosphate, a pyridine nucleotide derived from -NADP . We show here that intracellular dialysis of nicotinic acid adenine dinucleotide phosphate (N...
متن کاملAngiotensin II Ca signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways
Fellner, Susan K., and William J. Arendshorst. Angiotensin II Ca signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways. Am J Physiol Renal Physiol 288: F785–F791, 2005. First published December 21, 2004; doi:10.1152/ajprenal. 00372.2004.—ANG II induces a rise in cytosolic Ca ([Ca ]i) in vascular smooth muscle (VSM) cells via inositol trisphosphate receptor (IP3...
متن کاملNicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism.
Previous studies of arterial smooth muscle have shown that inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose mobilize Ca2+ from the sarcoplasmic reticulum. In contrast, little is known about Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate, a pyridine nucleotide derived from beta-NADP+. We show here that intracellular dialysis of nicotinic acid adenine dinucleotide phos...
متن کاملAngiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways.
ANG II induces a rise in cytosolic Ca(2+) ([Ca(2+)](i)) in vascular smooth muscle (VSM) cells via inositol trisphosphate receptor (IP(3)R) activation and release of Ca(2+) from the sarcoplasmic reticulum (SR). The Ca(2+) signal is augmented by calcium-induced calcium release (CICR) and by cyclic adeninediphosphate ribose (cADPR), which sensitizes the ryanodine-sensitive receptor (RyR) to Ca(2+)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 6 شماره
صفحات -
تاریخ انتشار 1996